X-Ray Determination of the Stereochemistry and Molecular Structure of 2,6-Dinitrato-9-thiabicyclo[3.3.1]nonane 9,9-Dioxide

By Peter H. McCabe and George A. Sim.* Chemistry Department, University of Glasgow, Glasgow G12 800

Abstract

The molecular geometry of the title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$, has been determined by X-ray diffraction. The molecule has a twin-chair conformation with the nitrato-groups in equatorial positions on the thiacyclohexane rings. The $\mathrm{C}(3) \cdots \mathrm{C}(7)$ transannular separation is $3.128(2) \AA$ and the $\mathrm{H} \cdots \mathrm{H} 3,7$-separation is ca. $1.9 \AA$. Crystallographic data are $a=15.144(3), b=7.851(3), c=19.958(4) ~ A, \beta=90.295(14)^{\circ}, Z=8$, space group A2/a. Diffractometer intensity measurements were made with both $\mathrm{Cu}-K_{\alpha}$ and $\mathrm{Mo}-K_{\alpha}$ radiation and least-squares adjustment of the atomic parameters converged at $R 0.080$ for $1872 \mathrm{Cu}-K_{\alpha}$ reflexions and at $R 0.040$ for 2718 Mo- K_{α} reflexions.

A RECENT X-ray study ${ }^{1}$ of 2,6 -dichloro- 9 -thiabicyclo[3.3.1]nonane 9,9 -dioxide (1) ${ }^{2}$ confirmed that the chlorosubstituents occupy equatorial positions on the thiacyclohexane rings. This stereochemistry is an outcome of the trans-addition of SCl_{2} to the double bonds of $Z, Z-$ cyclo-octa-1,5-diene to form (2), from which (1) was derived by peracid oxidation. ${ }^{2}$

The chloro-substituents of (2) are quantitatively replaced under mild conditions by nitrato-groups ${ }^{3}$ and the question arises as to whether the substitution occurs with retention or inversion of configuration. Anchimeric assistance to the leaving halide by the β-sulphide group with nucleophilic attack of nitrate on the intermediate thiiranium cation would lead to retention of the $C(2)$ and $C(6)$ configurations, as in (3a). The appearance of the $\mathrm{H}-\mathrm{C}-\mathrm{O}^{1} \mathrm{H}$ n.m.r. signal ($\delta 5.3-5.8$) as a broad multiplet, ${ }^{4}$ incorporating a $\mathrm{C}(2), \mathrm{C}(3)$ diaxial $\mathrm{H}-\mathrm{H}$ coupling, is consistent with the retention of stereochemistry but the presence of the diastereoisomer (3 b) with inverted configuration is not precluded as its $C(2), C(3)$ equatorialaxial and diequatorial couplings could be hidden.

2,6-Dinitrato-9-thiabicyclo[3.3.1]nonane was converted in quantitative yield by peracid oxidation into 2,6 -dinitrato- 9 -thiabicyclo $[3.3 .1]$ nonane $\quad 9,9$-dioxide which crystallized as a homogeneous material. ${ }^{3} \mathrm{We}$ undertook an X-ray analysis of this compound to define the stereochemistry unambiguously and to characterize the molecular conformation. The crystal structure was determined by direct phasing procedures and the atomic co-ordinates were adjusted by full-matrix least-squares calculations with two sets of X-ray intensities, one obtained with $\mathrm{Cu}-K_{\alpha}$ and the other with $\mathrm{Mo}-K_{\alpha}$ radiation. The results from these agree well and hence only the atomic co-ordinates, bond lengths, interbond angles, and torsion angles from the Mo- K_{α} analysis are in Tables 1-3.

The molecular structure is illustrated in the Figure. This shows that the nitrato-groups occupy equatorial positions on the thiacyclohexane rings and the compound is therefore formulated as (4a) rather than (4b), confirming that replacement of the chloro-substituents in (2) occurred with retention of configuration to give (3a).

Several X-ray diffraction studies of bicyclo[3.3.1]nonane derivatives have established that the twin-chair
conformer is characterized by a $C(3) \cdots C(7)$ separation of ca. $3.1 \AA$ and that the $\mathrm{H} \cdots \mathrm{H} 3,7$-separation is shorter than $2 \AA .^{5}$ Molecular mechanics calculations have produced estimates for the transannular $\mathrm{H} \cdots \mathrm{H}$ separation in the range $1.97-2.20 \AA,{ }^{6}$ and the geometry of the twin-chair conformer accordingly provides a useful test of the relative merits of the empirical force-fields employed in conformational calculations.

Table 1
Atomic co-ordinates

	x	y	z
S	$0.35063(2)$	$0.21439(5)$	$0.77592(2)$
C(1)	$0.26938(8)$	$0.15750(18)$	$0.83597(7)$
$\mathrm{C}(2)$	$0.21637(8)$	0.320 28(19)	0.85010 (7)
$\mathrm{C}(3)$	$0.26850(9)$	$0.46552(20)$	0.88241 (8)
C(4)	$0.35590(9)$	$0.50652(18)$	0.847 22(7)
C(5)	$0.41430(8)$	$0.35576(18)$	0.826 35(7)
C(6)	$0.45592(9)$	0.24593 (19)	$0.88159(7)$
C(7)	0.390 24(10)	$0.16690(23)$	$0.93008(8)$
C(8)	$0.31547(10)$	$0.06831(19)$	$0.89477(8)$
N(1)	0.069 02(9)	$0.21731(18)$	$0.87205(9)$
N(2)	$0.58269(9)$	0.288 07(20)	0.952 26(7)
$\mathrm{O}(1)$	$0.31002(9)$	$0.30709(17)$	$0.72175(6)$
$\mathrm{O}(2)$	$0.40230(8)$	$0.06637(15)$	$0.75894(6)$
$\mathrm{O}(3)$	0.148 02(7)	$0.28240(15)$	$0.89901(6)$
$\mathrm{O}(4)$	0.06751 (11)	0.183 27(26)	$0.81324(9)$
$\mathrm{O}(5)$	$0.01302(9)$	$0.20105(19)$	0.913 20(8)
$\mathrm{O}(6)$	$0.51281(8)$	$0.36510(16)$	0.917 37(6)
$\mathrm{O}(7)$	$0.59785(10)$	$0.13979(21)$	0.942 l (9)
$\mathrm{O}(8)$	0.619 93(10)	$0.38554(23)$	0.988 56(7)
H(1)	0.2338 (13)	0.078 5(26)	$0.8134(10)$
$\mathrm{H}(2)$	0.1903 (13)	0.3623 (27)	$0.8077(11)$
$\mathrm{H}\left(3_{1}\right)$	0.2329 9(13)	$0.5761(28)$	0.880 6(11)
$\mathrm{H}\left(3_{2}\right)$	$0.2792(13)$	0.4408 8(25)	$0.9307(11)$
$\mathrm{H}\left(4_{1}\right)$	0.3909 9(14)	$0.5732(25)$	0.878 4(10)
$\mathrm{H}\left(4{ }_{2}\right.$)	0.3479 9(14)	0.592 6(26)	0.8100 (11)
$\mathrm{H}(5)$	0.4620 (14)	0.399 6(26)	$0.7999(11)$
$\mathrm{H}(6)$	0.488 9(12)	0.163 6(28)	0.862 1(10)
$\mathrm{H}\left(7_{1}\right)$	$0.4188(16)$	$0.1027(31)$	0.958 2(12)
$\mathrm{H}\left(7{ }_{2}\right)$	$0.3723(13)$	0.258 8(27)	$0.9655(11)$
$\mathrm{H}\left(8_{1}\right)$	$0.2730(17)$	0.0430 (30)	0.926 4(12)
$\mathrm{H}\left(8{ }_{2}\right.$)	0.3390 (14)	-0.036 2(27)	$0.8761(10)$

The $\mathrm{C}(3) \cdots \mathrm{C}(7)$ and $\mathrm{H}\left(\mathbf{3}_{2}\right) \cdots \mathrm{H}\left(7_{2}\right)$ separations in (4a) obtained from the co-ordinates of Table 1 are $3.128(2)$ and $2.071(28) \AA$. The $\mathrm{C}(3)-\mathrm{H}\left(3_{2}\right)$ and $\mathrm{C}(7)-\mathrm{H}\left(7_{2}\right)$ distances of 1.00 and $0.93 \AA$, however, are shorter than the normal spectroscopic value for $\mathrm{C}\left(s p^{3}\right)-\mathrm{H}$ bonds, a well known artifact of the X-ray diffraction method, and when $\mathrm{H}\left(3_{2}\right)$ and $\mathrm{H}\left(7_{2}\right)$ are displaced along the $\mathrm{C}-\mathrm{H}$ vectors to make these $\mathrm{C}-\mathrm{H}$ distances $1.10 \AA$, the $\mathrm{H} \cdot \mathrm{H}$

Table 2
Bond lengths (\AA) and angles (${ }^{\circ}$)

$\mathrm{S}-\mathrm{O}(1)$	1.439(1)	$\mathrm{S}-\mathrm{O}(2)$	1.442(1)
S-C(1)	1.779(1)	$\mathrm{S}-\mathrm{C}(5)$	1.779(1)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.536(2)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.533(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.528(2)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.523(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.536(2)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.539(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.536(2)	$\mathrm{C}(8)-\mathrm{C}(1)$	1.532(2)
$\mathrm{C}(2)-\mathrm{O}(3)$	1.457(2)	$\mathrm{C}(6)-\mathrm{O}(6)$	1.456(2)
$\mathrm{N}(1)-\mathrm{O}(3)$	1.405(2)	$\mathrm{N}(2)-\mathrm{O}(6)$	1.401(2)
$\mathrm{N}(1)-\mathrm{O}(4)$	$1.204(3)$	$\mathrm{N}(2)-\mathrm{O}(7)$	$1.204(2)$
$\mathrm{N}(1)-\mathrm{O}(5)$	1.190(2)	$\mathrm{N}(2)-\mathrm{O}(8)$	$1.193(2)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.94(2)	$\mathrm{C}(5)-\mathrm{H}(5)$	0.96 (2)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.99(2)	$\mathrm{C}(6)-\mathrm{H}(6)$	0.91(2)
$\mathrm{C}(3)-\mathrm{H}\left(3_{1}\right)$	1.02(2)	$\mathrm{C}(7)-\mathrm{H}\left(7_{1}\right)$	0.87(2)
$\mathrm{C}(3)-\mathrm{H}\left(3_{2}\right)$	1.00 (2)	$\mathrm{C}(7)-\mathrm{H}\left(7_{2}\right)$	0.93(2)
$\mathrm{C}(4)-\mathrm{H}\left(4_{1}\right)$	0.97(2)	$\mathrm{C}(8)-\mathrm{H}\left(8_{1}\right)$	$0.92(3)$
$\mathrm{C}(4)-\mathrm{H}\left(4_{2}\right)$	1.01 (2)	$\mathrm{C}(8)-\mathrm{H}\left(8_{2}\right)$	0.97(2)
$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(5)$	98.6(1)	$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	117.5(1)
$\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(1)$	109.8(1)	$\mathrm{C}(5)-\mathrm{S}-\mathrm{O}(2)$	110.0(1)
$\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(2)$	109.5(1)	$\mathrm{C}(5)-\mathrm{S}-\mathrm{O}(1)$	109.7(1)
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$	106.2(1)	$\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)$	106.0(1)
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(8)$	108.5(1)	S-C(5)-C(4)	108.8(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	118.4(1)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	118.3(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$115.4(1)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	114.8(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	109.1(1)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	103.4(1)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	103.7(1)	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)$	109.7(1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	114.1(1)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	113.3(1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	117.5(1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	116.9(1)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{N}(1)$	115.1 (1)	$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{N}(2)$	$114.2(1)$
$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(4)$	117.8(1)	$\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(7)$	118.6(1)
$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(5)$	112.5(2)	$\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(8)$	112.2(1)
$\mathrm{O}(4)-\mathrm{N}(1)-\mathrm{O}(5)$	129.7(2)	$\mathrm{O}(7)-\mathrm{N}(2)-\mathrm{O}(8)$	129.2(2)

Table 3
Torsion angles (${ }^{\circ}$)

$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-64.0(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	49.4(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-44.2(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}$	54.6(1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-66.4(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}-\mathrm{C}(1)$	-62.0(1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}-\mathrm{O}(1)$	52.7(1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}-\mathrm{O}(2)$	-176.5(1)
$\mathrm{C}(5)-\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$	66.2(1)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$	-48.5(1)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$	-178.8(1)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}$	179.8(1)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	-58.0(2)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	168.6(1)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$58.2(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{N}(1)$	-85.5(1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{N}(1)$	151.0(1)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(4)$	7.1(2)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(5)$	-174.5(1)
$\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-65.4(1)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	52.3(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	-47.4(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{S}$	56.2 (1)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	-64.8(2)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(5)$	-62.1(1)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(2)$	52.9(1)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(1)$	-176.8(1)
$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)$	66.2(1)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)$	-48.3(1)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)$	-179.1(1)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}$	175.2(1)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	-62.4(1)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	168.1 (1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	57.0(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{N}(2)$	-156.3(1)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{N}(2)$	80.9(1)
$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(7)$	10.9(2)
$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(8)$	-169.8(1)

Figure Molecular structure of 2,6-dinitrato-9-thiabicyclo[3.3.1]nonane 9,9 -dioxide. The thermal ellipsoids of the S, O, N, and C atoms are drawn at the 50% probability level. The H atoms are represented by spheres of radius $0.1 \AA$
transannular distance becomes $1.92 \AA$. The corresponding experimental $\mathrm{C} \cdots \mathrm{C}, \mathrm{H} \cdots \mathrm{H}$, and corrected $\mathrm{H} \cdots \mathrm{H}$ separations obtained in the analysis with $\mathrm{Cu}-K_{\alpha}$ intensities are $3.128(8), 2.074(68)$, and $1.91 \AA$. The agreement between the two sets of results is excellent. Other X ray studies of bicyclo[3.3.1]nonane derivatives have given

(1) $X=\mathrm{Cl}, Y=\mathrm{H}, Z=\mathrm{SO}_{2}$
(2) $X=C l, Y=H, Z=S$
(3a) $X=O \mathrm{NO}_{2}, Y=\mathrm{H}, Z=S$
(3b) $X=H, Y=O \mathrm{NO}_{2}, Z=S$
(4a) $X=O \mathrm{NO}_{2}, Y=\mathrm{H}, Z=\mathrm{SO}_{2}$
(4b) $X=H, Y=\mathrm{ONO}_{2}, Z=\mathrm{SO}_{2}$
similar results ${ }^{5}$ and it is now evident that molecular mechanics calculations that estimate the $\mathrm{H} \cdots \mathrm{H} 3,7-$ separation in bicyclo[3.3.1]nonane to be $>2 \AA$ exaggerate the transannular repulsion.

The presence of the nitrato-substituents at positions 2 and 6 in (4a) causes the six-membered rings to be skewed
to a small extent, the torsion angles $\mathrm{S}-\mathrm{C}(\mathbf{1})-\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ differing by 9.4° and $\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$ and $\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ by 9.2°. Accordingly, the symmetry of the carbon framework is lowered from $C_{2 v}$ and approximates to C_{2} (see Table 3); the positions adopted by the nitrato-groups, however, do not conform to C_{2} symmetry, $c f . \mathrm{N}(1)-\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ and $\mathrm{N}(2)-\mathrm{O}(6)-\mathrm{C}(6)^{-}$ $\mathrm{C}(5)$ torsion angles of -85.5 and -156.3°. Bicyclo[3.3.1]nonanes lacking substituents at $\mathrm{C}(2), \mathrm{C}(4), \mathrm{C}(6)$, and $C(8)$ are not skewed in this way. ${ }^{5}$

Within the six-membered rings, the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $C(2)$ and $C(6)$ are 115.4 and 114.8°, whereas those at $C(4)$ and $C(8)$ are slightly larger, 117.5 and 116.9°, and those at $C(3)$ and $C(7)$ smaller, 114.1 and 113.3°. The $S-C-C$ angles at $C(1)$ and $C(5)$ are appreciably smaller, 106.0 108.8, mean 107.4 ${ }^{\circ}$. Molecular mechanics calculations, with the White and Bovill force field, ${ }^{6}$ for bicyclo[3.3.1]nonane give angles at $C(3), C(7)$ smaller than those at $\mathrm{C}(2), \mathrm{C}(4), \mathrm{C}(6)$, and $\mathrm{C}(8)$, with the $\mathrm{C}(9)-\mathrm{C}-\mathrm{C}$ angles appreciably smaller: $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 114.5^{\circ}, \mathrm{C}(2)-\mathrm{C}(3)^{-}$ $\mathrm{C}(4) 113.5^{\circ}, \mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2) 109.6^{\circ}$.

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}, \quad M=264.3$. Monoclinic, space group $A 2 / a, \quad a=15.144(3), \quad b=7.851(3), \quad c=$ 19.958(4) $\AA, \beta=90.295(14)^{\circ}, U=2374 \AA^{3}, D_{\mathrm{c}}=1.48 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=8, F(000)=1104, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=2.93 \mathrm{~cm}^{-1}, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $25.8 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-Cell dimensions were derived from least-squares treatment of the setting angles for 25 reflexions measured on an Enraf-Nonius CAD4 diffractometer with $\mathrm{Cu}-K_{\alpha}$ radiation. Two sets of intensity measurements were obtained: set 1 with $\mathrm{Cu}-K_{\alpha}$ radiation and set 2 with another crystal and Mo- K_{α} radiation. For set 1,2342 reflexions $h k l$ and $h k l$ were surveyed in the range $\theta \leqslant 72^{\circ}$ and 1872 reflexions satisfied the criterion $I>$ $2.5 \sigma(I)$. For set 2, 3436 reflexions $h k l$ and $h k l$ were surveyed in the range $\theta \leqslant 27^{\circ}$ and 2718 reflexions satisfied the criterion $I>2.5 \sigma(I)$.

Structure A nalysis.-With data set 1, the crystal structure was elucidated by a version of MULTAN, ${ }^{7}$ adapted for the Glasgow University ICL 2976 computer by Dr. C. J. Gilmore.

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc., Perkin Trans. 2, 1981, Index issue.

The co-ordinates and thermal parameters of the S, C, N, and O atoms were adjusted by full-matrix least-squares calculations with unit weights ($R 0.11$) after which the H atoms were located in a difference electron-density distribution and included in the least-squares calculations with isotropic thermal parameters. The weighting scheme was changed to $w=\left[\sigma^{2}(|F|)+0.0083|F|^{2}\right]^{-1}$ and the calculations converged at $R 0.080$ and $R_{\mathrm{w}} 0.104$.

Since this final value of R is rather high, suggesting that there are some systematic errors, another crystal was selected and intensity set 2 collected with Mo- K_{α} radiation. Least-squares adjustment of the atomic parameters with these intensity data converged at $R 0.040$ and $R_{\mathrm{w}} 0.048$. The results from this analysis are summarized in Tables 1-3.

Fourier and least-squares calculations were performed with the SHELX series of programs ${ }^{8}$ and the molecular diagram was prepared with ORTEP. ${ }^{9}$

Observed and calculated structure amplitudes, thermal parameters, and the atomic parameters obtained with the $\mathrm{Cu}-K_{\alpha}$ intensity data are listed in Supplementary Publication No. SUP 23292 (19 pp.).*

We thank the S.E.R.C. for a grant towards the purchase of the diffractometer.
[1/1963 Received, 21st December, 1981]

REFERENCES

${ }^{1}$ P. H. McCabe and G. A. Sim, Acta Crystallogr., 1981, B37, 1943.
${ }_{2}$ E. J. Corey and E. Block, J. Org. Chem., 1966, 31, 1663 ; E. D. Weil, K. J. Smith, and R. J. Gruber, ibid., 1966, 31, 1669 ,
${ }^{3}$ P. H. McCabe, C. I. de Jenga, and A. Stewart, Tetrahedron Lett., 1981, 22, 3681.
${ }^{4}$ G. L. Buchanan and G. W. McLay, Tetrahedron, 1966, 22, 1521.
${ }_{5}$ M. J. Bovill, P. J. Cox, H. P. Flitman, M. H. P. Guy, A. D. U. Hardy, P. H. McCabe, M. A. Macdonald, G. A. Sim, and D. N. J. White, Acta Crystallogr., 1979, B35, 669.
${ }^{6}$ N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, J. Am. Chem. Soc., 1971, 93, 1637; D. N. J. White and M. J. Bovill, J. Mol. Struct., 1976, 33, 273; D. N. J. White and M. J. Bovill, J. Chem. Soc., Perkin Trans. 2, 1977, 1610; J. A. Peters, J. M. A. Baas, B. van de Graaf, J. M. van der Toorn, and H. van Bekkum, Tetrahedron, 1978, 34, 3313.
${ }^{7}$ G. Germain, P. Main, and M. M. Woolfson, Acta Crystallogr., 1971, A27, 368.
${ }^{8}$ G. M. Sheldrick, SHELX, a program for crystal structure determination, University of Cambridge, 1976.
${ }^{9}$ C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1965.

